
oftware
e be
in an

continu-
or fields,
ysical
milar
sented

s are
ient
 scien-
e
mmar

xten-
ct.

arge
s

April 1, 1992

High-Performance Scientific Computing Using C++

K. G. Budge, J. S. Peery and A. C. Robinson
Computational Physics Research and Development (1431)

Sandia National Laboratories
Albuquerque, NM 87185-5800

kgbudge@sandia.gov, jspeery@cs.sandia.gov, acrobin@cs.sandia.gov

Abstract
Concepts from mathematics and physics often map well to object-oriented software since
the original concepts are of an abstract nature. We describe our experiences with develop-
ing high-performance shock-wave physics simulation codes in C++ and discuss the soft-
ware engineering issues which we have encountered. The primary enabling technology in
C++ for allowed us to share software between our development groups is operator over-
loading for a number of “numeric” objects. Unfortunately, this enabling feature can also
impact the efficiency of our computations. We describe the techniques we have utilized for
minimizing this difficulty.

Introduction
Developers of scientific software systems are tasked to implement abstract ideas and concepts. The s
implementation of algorithms and ideas from physics, mechanics and mathematics should in principl
complementary to the mathematical abstractions. Often these ideas are very naturally implemented
object-oriented style. For example, our group is developing software to solve the equations

(1)

(2)

subject to a variety of boundary conditions. These equations describe the mechanical response of a
ous medium. They contain numerous abstract mathematical objects such as scalar, vector, and tens
arithmetic operators, and calculus operators. Physical concepts such as the equation of state of a ph
substance and its constitutive response model can also be encapsulated very cleanly as a object. Si
objects are found in the equations describing many other physical systems. All of these can be repre
by appropriate data structures in a high-level computer language.

Traditionally, scientists have relied on FORTRAN for high-performance computing. The reasons for thi
clear. FORTRAN optimizing compilers have been around for a long time and produce extremely effic
code. Large libraries of numerical routines are available in the language. It is familiar to almost every
tific worker. The drawbacks of standard FORTRAN are also well-known. It is devoid of mandated typ
checking. It has no support for structures. The concept of a free memory store does not exist. Its gra
encourages an atrocious style of programming. Note that these statements are true ofstandardFORTRAN-
77. The deficiencies of FORTRAN are so painful that numerous vendors have provided proprietary e
sions to the language. For example, most vendors now support the nonstandard DO-ENDDO constru
Some codes simply cannot avoid using FORTRAN language extensions. For example, codes using l
databases and complicated algorithmsmustfind a way to dynamically allocate memory. Since no provision

T∇• ρb+ ρ
t2

2

d
d

u=

td
d

T f
td

d
u∇ T …, ,()=

upply
 man-

nes
hallenge
less the
ely

re pro-
, trans-

ntific
neral
lity
Appli-
lan-
lgebras,
anized

ecifi-
ar. The
ertain
 lan-
vailabil-
age
we

s and
ts to

ds
s an

n the
re
atures
which

com-
for this exists in standard FORTRAN-77, programmers must either use proprietary extensions which s
the existing functionality, make calls to system level routines based on C or develop intricate memory
agement schemes from common memory.

It is not unknown for a large scientific production code written in FORTRAN to exceed half a million li
in length and to include numerous platform-dependent statements. This represents a maintenance c
comparable to that for a small operating system. Furthermore, such code tends to be very opaque. Un
code is extremely well-documented, the transfer or retirement of one of its programmers can effectiv
freeze portions of the code, because no one else will ever be able to figure out what it does.

Many scientific programming groups have come to the realization that such programming practices a
hibitively expensive. What is needed is a programming environment in which code is highly reusable
parent to the reader, and easily debugged during development and maintenance, but which retains
FORTRAN-like efficiency. As a result, there is a growing interest in more modern languages in the scie
community. C++ has attracted the most interest because of its wide availability and support in the ge
programming community and because of its explicit design goals to provide object-oriented functiona
and excellent software engineering characteristics in a way which does not totally destroy efficiency.
cations include distributed particle simulations, partial differential equations, fluid mechanics, robotic
guages, mesh generation, adaptive grid methods, data-parallel C, general numeric libraries, image a
large scientific database management and genetic algorithms. See references [1]-[20] which are org
roughly chronologically.

It should be pointed out that the Fortran 90 standard has recently been adopted [21]. In addition a sp
cally non-ANSI based effort is underway to agree upon a High Performance Fortran standard this ye
final universal acceptance and wide availability of compilers for these languages is likely but on an unc
time scale. A major reason for not choosing to do our current development work in a Fortran 90 style
guage was the unclear state of the standard at the time we began our work as well as very uncertain a
ity and support considerations on our rapidly changing target architectures. In addition, current langu
specifications do not appear to provide the kind of robust software engineering characteristics which
have come to enjoy.

In this paper we briefly describe our use of C++ in two large-scale scientific code development project
give examples of how we have mapped interesting physical, mathematical and computational concep
C++. One project is developing a shock wave physics simulation code (PCTH) for fixed “Eulerian” gri
with massively parallel MIMD architectures as the primary target, and the other project (RHALE++) use
“Arbitrary Lagrangian-Eulerian” technology based on an unstructured grid finite element technology. I
following sections we describe several object-oriented concepts which we are utilizing and how we a
attempting to realize the power of the abstraction capability and the excellent software engineering fe
which the C++ language provides. Subsequently, we discuss some aspects of the efficiency difficulties
we have encountered as well as approaches to their resolution.

C++ As a Meta-Language for Mathematical Physics
We tend to regard C++ as being essentially ameta-language whose dialects can be tailored to a particular
field of application. Our dialects of C++ are tailored to mathematical physics. For example, the polar de
position of a velocity gradient is expressed by the equations [22]

(3)

(4)

(5)

(6)

L

D
1
2
--- L L T+() Sym L()= =

W
1
2
--- L L T–() Anti L()= =

z εijkV jmDmk[] Dual VD()= =

ω Dual W() 2 V Tr V()1–() 1– z–=

[23].

s are
me-
(7)

(8)

(9)

The time discretization used to integrate the last two equations is

(10)

(11)
In RHALE++ we have defined classes representing the vector and tensor objects in these equations
Using these classes, we can code this algorithm as

void Decompose(const double delt, SymTensor& V,
Tensor& R, const Tensor& L)

{
 SymTensor D;

AntiTensor W, Omega;
Vector z, omega;

D = Sym(L);
W = Anti(L);

z = Dual(V*D);
omega = Dual(W) - 2.0 * Inverse(V - Tr(V) * One) * z;
Omega = 0.5 * Dual(omega);

R = Inverse(One - 0.5 * delt * Omega) *
(One + 0.5 * delt * Omega) * R;

V += delt * Sym(L * V - V * Omega);
}

Note the heavy use of operator overloading. This code is transparent and its underlying class librarie
versatile and easy to maintain. A physicist familiar with the polar decomposition algorithm can make im
diate sense of this code fragment without the need for any additional documentation.

By contrast, the FORTRAN version of this subroutine is

subroutine decompose(delt,V_xx,V_xy,V_xz, V_yy,
* V_yz, V_zz, R_xx, R_xy, R_xz, R_yx, R_yy, R_yz,
* R_zx, R_zy, R_zz, L_xx, L_xy, L_xz, L_yx, L_yy,
* L_yz, L_zx, L_zy, L_zz)

D_xx = L_xx
D_xy = 0.5*(L_xy+L_yx)

... about three pages of these proceedings...

V_xy = V_xy + 0.5*(t3_xy + t3_yx)
V_zz = V_zz + t3_zz

return
end

Ω 1
2
---Dual ω()=

td
dR ΩR=

td
dV

LV V Ω–=

Rn 1+ 1
1
2
--- t∆()Ω–

 1–
1

1
2
--- t∆()Ω+

 Rn=

Vn 1+ Vn Sym LV V Ω–() t∆+=

able.

t opti-

ation
or fields.

ent
rom the

code.
argu-
ss of the
ents

scribe
 state
ound
nd,

ncepts
encapsu-
ncept.

ulation
tion of

nd con-
quires
g the
The stylistic advantages of C++ are obvious. The second subroutine (in FORTRAN) is virtually unread
It is also very difficult to debug. However, the FORTRAN version is somewhat more efficient. Several
expressions are evaluated in the C++ version that are never used. In principle, a sufficiently intelligen
mizer could eliminate these expressions.

Field classes representing scalar, vector, and tensor fields are fundamental to our approach to simul
coding. Field classes are coded as sets of smart arrays representing the components of vector or tens
At this level, no topological information is included in the fields. Thus, while numerous element-by-elem
operations are overloaded, no calculus operations are defined. These are added in classes derived f
basic field classes.

These field classes hide subscripting and loops, eliminating a common source of error in FORTRAN
In the FORTRAN code fragment above the functional interface looks essentially the same whether the
ments are scalars or data-parallel arrays. In the C++ case the same holds true except the compactne
high-order tensor fields hides the extent of the implied data and the interactions between tensor elem
implied by the mathematical operations.

Encapsulation of Physical Concepts
In our simulation codes empirical equations are used along with the basic conservation equations to de
how a given material behaves. In shock physics, two of these empirical equations are an equation of
and a constitutive model. An equation of state generally determines the pressure, temperature, and s
speed of a material based on the material’s density and energy. A constitutive model, on the other ha
determines the stress state of a material based on the material deformation. Within each of these co
numerous models are available; however, the inputs and outputs are the same. C++ can be used to
late the uniqueness of a model (particularly the private data) and provide a common interface to the co

Using C++ to encapsulate physical concepts can be best seen in an equation of state class. Encaps
begins with the concept of an abstract class that contains all data and functions common to every equa
state. A simplified summary of such a class is given as

class Equation_of_State {
public:

Equation_of_State();
Equation_of_State(const Equation_of_State&);
~Equation_of_State();
virtual void Update_Thermodynamic_State(

const Field& density,
const Field& energy,
Field& pressure,
Field& temperature,
Field& sound_speed) const = 0;

};
This abstract class provides a common interface to updating the thermodynamic state of materials a
tains data that is unique to every equation of state. Constructing a unique equation of state simply re
deriving from the abstract class, adding any unique data, and providing a unique function for updatin
thermodynamic state of the material. For example, an ideal gas equation of state class is given as

class Ideal_Gas : public Equation_of_State {
private:

double gamma; // Ratio of specific heats
double cv; // Specific heat
double gamma_minus_one; // Gamma - 1

public:
Ideal_Gas();
Ideal_Gas(const Ideal_Gas&);
~Ideal_Gas();
void Update_Thermodynamic_State(

const Field& density,

f state
ed to
code

est of
n, by
and con-
quickly.
E++

ith a
is for

g the
chines
ocal
py of a
values

 the
rallel
pted as
st of

rs of our
icular

es is
wards

ject of
array
re. As

s, is
rays”
ication
uter

y inex-
 all the
const Field& energy,
Field& pressure,
Field& temperature,
Field& sound_speed) const;

};

The third private variable (gamma-1) is indicative of the internal constants which a given equations o
might create in order to more efficiently perform its functions as a server class for fields which are pass
it. With this approach, to add an additional equations of state option one only has to modify the physics
at the one location where a particular type of equation of state is specified for a given material. The r
the code utilizes only the base class pointer and the correct function are called at run time. In additio
carefully design, a class that abstracts the physics can be used by many codes (the equation of state
stitutive classes are being designed to be used both by PCTH and RHALE++) and can be extended
For example, it has taken less than 4 hours to add a complicated new constitutive model to the RHAL
code.

Tracer Particle Objects
PCTH is being developing with massively parallel MIMD architectures as a primary focus although w
data-parallel syntax to facilitate access to vector hardware. One of the requirements for these codes
something that is called atracer particle. These are points which do not interact with the simulation flow
field but are required to follow the flow. Since the PCTH code decomposes work spatially by subdividin
simulation space, these particles (objects) need to skip from node to node of the massively parallel ma
according to the dynamics of the flow field. These particles store an identifier, position, velocity and l
state values. They know how to send themselves to neighboring nodes as well as how to create a co
particle which as been sent from a neighboring node. The physics code knows how to interpolate state
onto the tracer particles.

C++ Software Engineering Experience
At this point in time there are relatively few classes for purchase or in the public domain that address
needs of scientific community and, of these, none have been ported and optimized for vector and pa
computing architectures. In addition, there are no classes for scientific computing that have been ado
a standard. Part of the philosophy behind C++ is not to “re-invent the wheel;” however, at this time, mo
the burden of developing base classes, such as matrix, array, and vector classes, falls on the membe
project teams. As a result, there is a proliferation of scientific class libraries, each with their own part
syntax, functionality, and performance.

The redundance of these scientific classes is very unfortunate because developing robust base class
extremely expensive. One must hope that the lifetime of the code project is long enough to reap the re
of the initial investment in developing the base classes.

The RHALE++ and PCTH projects both began with their own flavors of Field classes. The RHALE++
project implemented the field classes as arrays of objects while the PCTH project implemented an ob
arrays approach. However, it was realized that although the initial investment of developing a robust
class is expensive, it is equally expensive to port and tune the class to a particular computer architectu
a result, a common array class, which serves as the building block for scalar, vector, and tensor field
being developed as the basis for performing mathematical operation in both codes in an “object of ar
approach. We feel that this is a wise investment since the performance of the array class is a direct ind
of the performance of theses two codes and thus only this class must be tuned for a particular comp
architecture and both codes will benefit.

Although developing robust base classes is costly, extending or deriving from these classes is relativel
pensive. For example, extending an array class to a vector array class would be very inexpensive for
operations for which one operates on the components of a vector.

the
llel
rlying
equired

ely
,
hope

tures
ct,

 vol-
duc-
t. Our

cod-
apabili-
 to a
ns,
rs that
nters.
ollow-

gging
e phys-
xcel-
res of

an be

ses a
numer-

ns
t in the
ame set
codes
l com-
re con-
t code
sing in

 argu-
ences.
.

ALE
 the

oving
A major reason for going with C++ was the complexity of the algorithms which we were dealing with in
case of the RHALE++ project and the complexity of the underlying (current and unknown future) para
architectures in the case of the PCTH project. By using object-oriented concepts we can hide the unde
architectures to a great degree and thus enable us to quickly port to any machine which we may be r
to run our code on.

The fact that C++ is based on C gives us confidence that a C++ environment can be provided relativ
cheaply on any architecture of interest. The architectures potentially include a variety of MIMD, SIMD
data-parallel and vector processors as well networks of high performance workstations. In addition we
to eventually take full advantage of the workstation software tools market even on the exotic architec
which we must deal with. We believe that much of this software will be written in C++ in the future. In fa
in PCTH we are already utilizing a commercial solid modeling toolkit written in C++ to implement the
ume fraction computations in the initialization phase of our simulations. As we consider balancing pro
tion software development with the uncertainties of the future, C++ has appeared to be an excellent be
rational is similar to common arguments given for moving to C++ for production development [24].

One of the most enticing aspects of C++ is the elimination of many common bugs introduced in Fortran
ing. Many of these bugs are removed by the strong type checking and function argument matching c
ties inherent in C++. With the use of overloaded operators, index mistakes are eliminated or reduced
single location in the code which can be easily identified and corrected. For most scientific applicatio
ninety percent or more of the bugs have just been eliminated. However, for most Fortran programme
switch to C or C++, a new and much more nasty bug is potentially introduced with the concept of poi
Fortunately, there are very nice debugging environments readily available for C++ due to the strong f
ing in the overall programming community.

In the RHALE++ and PCTH projects, it has been our experience that we spend much less time debu
executable C++ code than Fortran code and that most of our debugging activities are in debugging th
ics (incorrectly coded or poor selection of algorithms) and sometimes in locating bad pointers. This e
lent experience is due mainly to our use of overloaded operators and the robust error detection featu
C++ compilers.

C++ Reusability
Another aspect of C++ and object-oriented programming is the ease with which new physical models c
added to a standing code and ported between platforms and projects. Both the PCTH and RHALE++
projects are developing large and complex codes which will be evolving for a number of years. PCTH u
finite-difference method, whereas RHALE++ uses a finite-element method. These two approaches to
ical calculus differ considerably.

Despite the profound difference in overall methods, we are now in the process of merging code portio
which are conceptually identical. This is possible because of the field class concept which is inheren
underlying physics and thus the codes themselves. We are now converting the two codes to use the s
of basic field classes, which are then specialized for finite difference/finite element field classes. Both
must eventually run on a wide variety of platforms, ranging from PCs to the newest massively paralle
puters. The architectural differences between platforms require different optimization strategies. We a
fident that these can be hidden in a great degree in the field class libraries. The need to write efficien
for massively parallel computers and the prospect of hiding domain decomposition and message pas
the field class libraries was a strong incentive to investigate scientific C++ in the first place.

The equations of state and strength models are derived from abstract base classes but take fields as
ments. It does not really matter whether the underlying field is based on field elements or finite differ
This makes it relatively simple to incorporate new equations of state or strength models in the codes

The original equation of state code was developed for PCTH. It was then moved relatively easily to RH
and the new upgraded capabilities will move readily back to PCTH. At this time we are converging on
correct specification and approach.

Complicated algorithms can also benefit from abstract formulations. We have had the experience of m

e com-
e use
rs.
 reus-
ution

ient
 (vec-

ions do
es

lar
d San-
nage-

h calls
hat
ves a

overall
ominant

er the
a complicated interface tracking algorithm from PCTH to RHALE essentially as a cut-and-paste.

The fundamental reason why we are able to move in the direction of better code reuse is because of th
mon underlying physical concepts which must be modeled by out two codes. The connecting link is th
of field classes which can be considered to be a “numeric” type with appropriate overloaded operato
Unfortunately overloaded operators, which have the potential for such excellent code maintainability,
ability and extensibility for our development projects, are also the major impediment for efficient exec
of our codes. These difficulties and the extent to which they have been solved will now be described.

C++ Efficiency Issues for Overloaded Operators
All the advantages of C++ are unfortunately offset to some degree by the difficulty of developing effic
overloaded operator methods for large array objects. Many high performance machines require array
tor) operations to achieve good performance. The fact that the current C++ language and implementat
not support compiler optimization of large arithmetic objects, as if they were fundamental types, caus
extensive difficulties for developing efficient C++ applications.

This is illustrated in Table 1, which shows the estimated processor speeds for test versions of the po
decomposition algorithm. Both C++ and FORTRAN-77 versions were tested on Sun workstations an
dia’s CRAY-YMP for a range of field sizes. The C++ version uses reference counting and memory ma
ment techniques discussed later in this section. In addition, innermost loops are implemented throug
to FORTRAN subroutines (using the C++ external linkage specification facility). The statistics show t
peak speed for pure FORTRAN-77 is two or three times greater than that for C++ and that C++ invol
considerable overhead (reflected in the array size at which one gets 50% of peak performance).

These figures are somewhat discouraging taken at face value. The Cray is a vector machine and its
performance is extremely sensitive to scalar portions of the code. The scalar overhead tends to be d
except when vector lengths are large. The peak speed of C++ is about half of the Fortran speed.

What accounts for these results? The problem is that C++ strongly isolates binary operations. Consid
following test program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

class Array {

Table 1. Performance of Field Classes In a Polar Decomposition Test Problem

elements
Sun Sparc-2

MFlops
Sun Sparc-2/F

MFlops
Cray YMP

MFlops
Cray YMP/F

MFlops

1 0.04 -- 0.11 12.7

10 0.31 1.3 1.03 63.7

100 0.92 3.1 9.6 185.8

1000 0.89 2.7 59.1 221.9

10000 0.88 2.7 123.7 225.4

100000 out of memory out of memory 140.0 225.9

50% peak 18 elements 13 elements 1380 elements 27 elements

 public:
 Array(void);
 Array(const int n);
 Array(const int n, const double[]);
 Array(const Array&);
 ~Array(void);
 Array& operator=(const Array&);

 double& operator[](const int);

 friend Array operator*(const Array&, const Array&);
 friend Array operator+(const Array&, const Array&);

 private:
 int n;
 double *data;
};

inline Array::Array(void) :
 n(0),
 data(NULL)
{}

inline Array::Array(const int nn) :
 n(nn),
 data(new double[nn])
{}

inline Array::Array(const int nn, const double d[]) :
 n(nn),
 data(new double[nn])
{
 memcpy(data, d, sizeof(double)*n);
}

inline Array::Array(const Array& src) :
 n(src.n),
 data(new double[src.n])
{
 memcpy(data, src.data, sizeof(double)*n);
}

inline Array::~Array(void){
 delete data;
}

inline Array& Array::operator=(const Array& src){
 delete data;
 n = src.n;
 data = new double[n];
 memcpy(data, src.data, sizeof(double)*n);
 return *this;
}

inline double& Array::operator[](const int nn){
 if (nn<0 || nn > n) abort();
 return data[nn];
}

inline Array operator*(const Array& a, const Array& b){
 Array result(a.n);
 for (register i=0; i<a.n; i++)
 result.data[i] = a.data[i] * b.data[i];
 return result;
}

inline Array operator+(const Array& a, const Array& b){
 Array result(a.n);
 for (register i=0; i<a.n; i++)
 result.data[i] = a.data[i] + b.data[i];
 return result;
}

main(){
const int SIZE = 50000;
 static double a_data[SIZE] = { 2., 5., 3., 8. };
 static double b_data[SIZE] = { 5., 3., 4., 2. };
 static double c_data[SIZE] = { 3., 4., 5., 6. };
 static double x_data[SIZE] = { 2., 5., 7., 9.};

 Array A(SIZE, a_data);
 Array B(SIZE, b_data);
 Array C(SIZE, c_data);
 Array X(SIZE, x_data);
 Array Y;

 for (register i=0; i<100; i++){
 Y = C + X*(B + X*A);
 }

 printf(“First element is %f\n”, Y[0]);
}

The C and FORTRAN equivalents of this program achieve a peak performance of 230 MFlops on the
CRAY-YMP. This unoptimized C++ version achieves only 49 MFlops.

The CFRONT translater generates code which is essentially equivalent to

struct Array {
 int n ;
 double *data ;
};

static char multiply_Array_Array(
 struct Array *result,
 struct Array *a,
 struct Array *b)
{
 struct Array Result ;
 register int i ;
 int itmp ;

 itmp = a->n;
 Result.n = itmp;
 Result.data = (double*)malloc(sizeof(double)* itmp);

 for(i=0;i < a-> n ;i ++)
 Result.data[i] = a->data [i] * b->data [i];

 result->n = Result.n;
 result->data =
(double*)malloc(sizeof(double)*Result.n);
 memcpy(result->data, Result.data,
 sizeof(double) * result->n);

 free (Result.data);
 return ;
}

static char add_Array_Array (
 struct Array *result,
 struct Array *a,
 struct Array *b)
{
 struct Array Result ;
 register int i ;
 int itmp ;

 itmp = a->n;
 Result.n = itmp;
 Result.data = (double *)malloc(sizeof(double)*itmp);

 for(i=0;i < a->n ;i ++)
 Result.data[i] = a->data[i] + b->data[i];

 result->n = Result.n;
 result->data =
(double *)malloc(sizeof(double)* Result.n);
 memcpy(result->data, Result.data ,
 sizeof(double)* result->n);

 free (Result.data);
 return ;
}

int main (){

 static double a_data [50000]= { 2. , 5. , 3. , 8. } ;
 static double b_data [50000]= { 5. , 3. , 4. , 2. } ;
 static double c_data [50000]= { 3. , 4. , 5. , 6. } ;
 static double x_data [50000]= { 2. , 5. , 7. , 9. } ;

 struct Array A ;
 struct Array B ;
 struct Array C ;
 struct Array X ;
 struct Array Y ;

 register int i ;

 A.n = 50000;
 A.data = (double *)malloc (sizeof(double)* 50000);
 memcpy(A.data , (double*)a_data, sizeof(double)* A.n);

 B.n = 50000;
 B.data = (double *)malloc (sizeof(double)* 50000);
 memcpy(B.data , (double*)b_data, sizeof(double)* B.n);

 con-
ntents
 C.n = 50000;
 C.data = (double *)malloc (sizeof(double)* 50000);
 memcpy(C.data , (double*)c_data, sizeof(double)* C.n);

 X.n = 50000;
 X.data = (double *)malloc (sizeof(double)* 50000);
 memcpy(X.data , (double*)x_data, sizeof(double)* X.n);

 for(i=0;i < 100 ;i ++) {
 struct Array atmp1 ;
 struct Array atmp2 ;
 struct Array atmp3 ;
 struct Array atmp4 ;

 multiply_Array_Array(&atmp1, &X, &A);
 add_Array_Array(&atmp2, &B, &atmp1);
 multiply_Array_Array(&atmp3 , &X, &atmp2);
 add_Array_Array(&atmp4, &C, &atmp3);

 free(Y.data);
 Y.n = atmp4.n;
 Y.data = (double *)malloc(sizeof(double)* Y.n);
 memcpy(Y.data, atmp4.data, sizeof(double)* Y.n);

 free(atmp4.data);
 free(atmp3.data);
 free(atmp2.data);
 free(atmp1.data);
 }

 printf (“First element is %f\n”, (0 > Y.n ? abort(),
 0 : Y.data[0]));\

 free(Y.data);
 free(X.data);
 free(C.data);
 free(B.data);
 free(A.data);
}

Loops are not inlined. Thus, although they vectorize individually, they cannot be chained. In addition,
siderable effort is wasted allocating and de-allocating memory for the temporaries and copying the co
of temporaries to local variables.

The latter difficulty is solvable through the well-known technique ofreference counting. Using this tech-
nique, the definition ofclass Array is changed as follows:

class Array {
 public:
 Array(void);
 Array(const int n);
 Array(const int n, const double[]);
 Array(const Array&);
 ~Array(void);
 Array& operator=(const Array&);

 double& operator[](const int);

 of the
 friend Array operator*(const Array&, const Array&);
 friend Array operator+(const Array&, const Array&);

 private:
 int n;

int *ref_count;
 double *data;
};

inline Array::Array(void) :
 n(0),
 data(NULL),
 ref_count(NULL)
{}

inline Array::Array(const int nn) :
 n(nn),
 ref_count(new int(1)),
 data(new double[nn])
{}

inline Array::Array(const int nn, const double d[]) :
 n(nn),
 ref_count(new int(1)),
 data(new double[nn])
{
 memcpy(data, d, sizeof(double)*n);
}

inline Array::Array(const Array& src) :
 n(src.n),
 data(src.data),
 ref_count(src.ref_count)
{
 if (ref_count) (*ref_count)++;
}

inline Array::~Array(void){
 if (ref_count && !--*ref_count){
 delete data;
 delete ref_count;
 }
}

inline Array& Array::operator=(const Array& src){
 if (ref_count && !--*ref_count){
 delete ref_count;
 delete data;
 }
 n = src.n;
 ref_count = src.ref_count;
 if (ref_count) (*ref_count)++;
 data = src.data;
 return *this;
}

With this change, the peak computation rate jumps to 84 MFlops -- a 70% increase, but still far short
230 MFlops achieved with conventional C coding.

cation
 taking

for

ould
Profiling of our test code shows that, for moderate array sizes, much time is spent in the memory allo
and deallocation routines. Our experience is that the scalar overhead can be significantly reduced by
charge of memory management through overloadednew anddelete operators. If we use the memory
manager we developed for the field class library, the computation rate jumps from 3.7 to 8.5 MFlops
small arrays (~128 elements)..

Now consider some hypothetical future enhancements to the compiler. If loops inlined, the translator w
produce code within the main program loop equivalent to

 for(i=0; i < 100 ; i ++) {
 struct Array atmp1 ;

struct Array atmp2 ;
struct Array atmp3 ;
struct Array atmp4 ;
struct Array Result ;
register int ii;

Result.n = X.n;
Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 for(ii=0; ii < X.n; ii++)
Result.data[ii] = X.data[ii] * A.data[ii];

 atmp1.n = Result.n;
atmp1.data = Result.data;
atmp1.ref_count = Result.ref_count;
if (atmp1.ref_count) (*atmp1.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

 Result.n = B.n;
Result.data = (double *)malloc(sizeof(double)*B.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 for(ii=0; ii < B.n; ii++)
Result.data[ii] = B.data[ii] + atmp1.data[ii];

 atmp2.n = Result.n;
atmp2.data = Result.data;

 atmp2.ref_count = Result.ref_count;
if (atmp2.ref_count) (*atmp2.ref_count)++;

 if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

 Result.n = X.n;
Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 for(ii=0; ii < X.n; ii++)

ls that
Result.data[ii] = X.data[ii] * atmp2.data[ii];

 atmp3.n = Result.n;
 atmp3.data = Result.data;

atmp3.ref_count = Result.ref_count;
if (atmp3.ref_count) (*atmp3.ref_count)++;

 if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

 Result.n = C.n;
 Result.data = (double *)malloc(sizeof(double)*C.n);

Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 for(ii=0; ii < C.n; ii++)
Result.data[ii] = C.data[ii] + atmp3.data[ii];

 atmp4.n = Result.n;
atmp4.data = Result.data;
atmp4.ref_count = Result.ref_count;
if (atmp4.ref_count) (*atmp4.ref_count)++;

 if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);

 free (Result.ref_count);
}

 if (Y.ref_count && !--(*Y.ref_count)){
free(Y.ref_count);
free(Y.data);

}
 Y.n = atmp4.n;

Y.ref_count = atmp4.ref_count;
if (Y.ref_count) (*Y.ref_count)++;
Y.data = atmp4.data;

 if (atmp4.ref_count && !--(*atmp4.ref_count)){
free(atmp4.ref_count);
free(atmp4.data);

}
 if (atmp3.ref_count && !--(*atmp3.ref_count)){

free(atmp3.ref_count);
free(atmp3.data);

}
if (atmp2.ref_count && !--(*atmp2.ref_count)){

free(atmp2.ref_count);
free(atmp2.data);

}
if (atmp1.ref_count && !--(*atmp1.ref_count)){

free(atmp1.ref_count);
free(atmp1.data);

}
 }

The individual loops are separated by substantial sections of code. Close examination of these revea
the code can be rearranged:

 for(i=0; i < 100 ; i ++) {
 struct Array atmp1 ;

struct Array atmp2 ;
struct Array atmp3 ;
struct Array atmp4 ;
struct Array Result ;
register int ii;

Result.n = X.n;
Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 atmp1.n = Result.n;
atmp1.data = Result.data;
atmp1.ref_count = Result.ref_count;
if (atmp1.ref_count) (*atmp1.ref_count)++;

if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

 Result.n = B.n;
Result.data = (double *)malloc(sizeof(double)*B.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 atmp2.n = Result.n;
atmp2.data = Result.data;

 atmp2.ref_count = Result.ref_count;
if (atmp2.ref_count) (*atmp2.ref_count)++;

 if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

 Result.n = X.n;
Result.data = (double *)malloc(sizeof(double)*X.n);
Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 atmp3.n = Result.n;
 atmp3.data = Result.data;

atmp3.ref_count = Result.ref_count;
if (atmp3.ref_count) (*atmp3.ref_count)++;

 if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);
free (Result.ref_count);

}

 Result.n = C.n;
 Result.data = (double *)malloc(sizeof(double)*C.n);

Result.ref_count = (int *)malloc(sizeof(int));
*Result.ref_count = 1;

 atmp4.n = Result.n;

de in

ld
emely

ented

expres-
atmp4.data = Result.data;
atmp4.ref_count = Result.ref_count;
if (atmp4.ref_count) (*atmp4.ref_count)++;

 if (Result.ref_count && ! --(*Result.ref_count)){
free (Result.data);

 free (Result.ref_count);
}

 if (Y.ref_count && !--(*Y.ref_count)){
free(Y.ref_count);
free(Y.data);

}
 Y.n = atmp4.n;

Y.ref_count = atmp4.ref_count;
if (Y.ref_count) (*Y.ref_count)++;
Y.data = atmp4.data;

 for(ii=0; ii < X.n; ii++)
atmp1.data[ii] = X.data[ii] * A.data[ii];

 for(ii=0; ii < B.n; ii++)
atmp2.data[ii] = B.data[ii] + atmp1.data[ii];

 for(ii=0; ii < X.n; ii++)
atmp3.data[ii] = X.data[ii] * atmp2.data[ii];

 for(ii=0; ii < C.n; ii++)
atmp4.data[ii] = C.data[ii] + atmp3.data[ii];

 if (atmp4.ref_count && !--(*atmp4.ref_count)){
free(atmp4.ref_count);
free(atmp4.data);

}
 if (atmp3.ref_count && !--(*atmp3.ref_count)){

free(atmp3.ref_count);
free(atmp3.data);

}
if (atmp2.ref_count && !--(*atmp2.ref_count)){

free(atmp2.ref_count);
free(atmp2.data);

}
if (atmp1.ref_count && !--(*atmp1.ref_count)){

free(atmp1.ref_count);
free(atmp1.data);

}
 }

This puts the loops together and permits chaining. The only assumptions made in rearranging the co
this manner are thatthe allocation/deallocation routines have no side effects and thatthe allocation routine
returns a pointer to unaliased memory.This is equivalent to requiring that the global operatorsnew and
delete have no side effects and no aliasing. Failure to obtain memory in the allocation routine shou
throw an exception rather than returning a null pointer. If permitted to make these assumptions, an extr
intelligent compiler might eliminate the allocation/deallocation operations entirely.

Several other techniques for improving vector performance are known, although we have not implem
them in our present codes. The technique ofdeferred expression evaluation eliminates nearly all large tem-
poraries, but with a significant overhead cost. The technique consists of building a parse tree for each

aries
n apply
arrays

ge to

rily

s and

 of the

ourag-

e a
uilt-in

esent
chitec-
s gen-
ted
t yet in
e than
ably.
ue to
r our

anu-
m the
single
s turn
 possi-
ll per-
ent
ing for
gram-
le.
sion at run time, which is only evaluated when it is assigned to a variable or otherwise used. Tempor
contain tree nodes rather than data and use a relatively small amount of memory. Furthermore, one ca
optimizations to the parse tree, although the run time overhead involved may be prohibitive unless the
are very large [25].

An equivalent effect (with greatly reduced overhead) could be obtained by extending the C++ langua
permit overloading of entire parse trees. For example, the signature

Array& operator=+(Array&, const Array&, const Array&)
might correspond to

a = b + c;
while

Array operator+*(const Array&, const Array&, const Array&)
would correspond to

a + b*c;

The chief objection to this approach is its complexity, particularly if one attempts to extend it to arbitra
complex parse trees.

Another approach would be to permit users to specify optimizations along with the definition of a clas
its operations. For example, one could instruct the compiler to replace all expressions of the form

a = b + c*d;
with the expression

a = c*d, a += b;
which might be easier to optimize because no memory allocations take place between the evaluation
two sub-expressions.

Although we have no direct experience to date the advent of return value optimizing compilers is enc
ing [26].

The simplest solution may be to standardize an array class. Since the array class name would becom
reserved identifier, vendors would be free to develop compilers that implement the array class as a b
type.

 Even with the difficulties described above, we have seen that our C++ code can perform well with pr
C++ language systems. We have simulated impact events on several high performance computer ar
tures using our C++ codes, and have obtained performance results which are competitive with previou
eration FORTRAN codes. In the case of PCTH running on the nCUBE hypercube we have implemen
imbedded assembly language routines for many of the operations in the base field classes (though no
the calculus type operator classes). Results to date show that for sufficiently large granularities no mor
about a 50 percent loss will be sustained. Further optimization should improve this estimate consider
The required granularity tends to be much larger than the granularity required for good efficiencies d
message passing overhead but not so large as to be unrealistic for utilizing the machine effectively fo
simulations. On 1 CPU of the Cray YMP, the PCTH code has achieved 90 percent of the original CTH
(FORTRAN 77) code speed on a fairly complicated two-dimensional problem with a 250x250 field gr
larity. In this case as well, smaller problems suffer from scalar code overhead as would be expected fro
results described earlier. The reasons the numbers compare so well for the CRAY is the fact that every
vector operation in the field classes have been carefully optimized and the fundamental vector length
out to be much larger in the PCTH code than in the CTH code (due to the field abstraction). It is also
ble that there are not sufficient chaining operations in the CTH algorithms to significantly boost overa
formance over the binary operation limit. These results, for a base field class whose methods implem
reference counting, internal memory management and specialized routines, are sufficiently encourag
us to believe that C++ can become an extremely effective language for scientific and engineering pro
ming as better class libraries, language features, and optimizing compilers become generally availab

 excel-
we are
f base
xcellent

 on
n to
ility and
r over-
pect
which
d For-
cts are
sider
int of
t we
 this
+ are
ct to

nder

nted
 and

ium
90.

s,”

iting a
-

ings

pu-
ical

Envi-
r-

ur-

”
92,
Summary
The abstractions and software engineering properties of the C++ language have been found to be an
lent fit to large scale scientific software development for the strong shock wave physics codes which
developing. We have found that considerable effort must be expended in the design (and redesign) o
classes which are to be used in our codes. However, once these classes are developed, we find that e
control over the development of additional code is obtained. We have demonstrated that code based
object-oriented ideas can be more readily reusable (shareable) by other scientific developers. We pla
share our code to an even greater extent in the future as current classes are redesigned. Good reusab
shareability for our application classes and algorithms tends to hinge on the extensive use of operato
loading for objects which are essentially “numeric” types. Unfortunately, this is also the most difficult as
of the language to implement with efficiencies which approach C or Fortran. The various techniques
we have implemented to improve operator overloading efficiencies allow us to approach but not excee
tran efficiencies on the high-performance architectures which we have investigated as long as our obje
of sufficiently large granularity. Our current efficiency estimates are within acceptable limits but we con
that much more attention must be paid to issues of optimization of numeric types both from the standpo
compiler optimization and the language specification. The rapid increase in interest for using C++ tha
observe in the scientific computing community implies that an opportunity to gain a strong foothold in
market is available. We consider that the many advantages for software development obtained by C+
worth the price today but that continued rapid development of the fundamental technology with respe
operator overloading of numeric object types is essential to compete effectively in the future.

Acknowledgments
This work performed at Sandia National Laboratories supported by the U. S. Department of Energy u
contract number DE-AC04-76DP00789.

References
[1] I. G. Angus and W. T. Thompkins, “Data Storage, Concurrency, and Portability: An Object Orie

Approach to Fluid Mechanics,” The Fourth Conference on Hypercubes, Concurrent Computers
Applications, 1989.

[2] R. J. Collins, “CM++: A C++ Interface to the Connection Machine,” Proceedings of the Sympos
on Object Oriented Programming Emphasizing Practical Applications, Marist College, Sept. 19

[3] D. J. Miller and R. C. Lennox, “An Object-Oriented Environment for Robot System Architecture
IEEE International Conference on Robotics and Automation, 1990.

[4] D. W. Forslund, C. Wingate, P. Ford, J. S. Junkins, J. Jackson, S. C. Pope, “Experiences in Wr
Distributed Particle Simulation Code in C++,” USENIX C++ Conference Proceedings, San Fran
cisco, CA, April 9-11, 1990.

[5] R. J. Collins and D. R. Jefferson, “Selection in Massively Parallel Genetic Algorithms,” Proceed
of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 1991.

[6] A. Baden, C. Day, R. Grossman, D. Lifka, E. Lusk, E. May, And L. Price, “A data model for com
tations in high energy physics (preliminary report),” Laboratory for Advanced Computing Techn
Report Number LAC91-R8, Univ. of Illinois at Chicago, December, 1991.

[7] C. M. Chase, A. L. Cheung, A. P. Reeves and M. R. Smith, “Paragon: A Parallel Programming
ronment for Scientific Applications Using Communication Structures,” 1991 International Confe
ence on Parallel Processing.

[8] T. Keffer, “Object-Oriented Numerics, Part 1: Vectors, Matrices and All That Stuff,” The C++ Jo
nal, 1(4), 1991, pp. 3-9.

[9] I. G. Angus, “Parallelism, Object Oriented Programming Methods, Portable Software and C++,
Proc. 8th Computing in Civil Engineering Symposium, American Society of Civil Engineers, 19
pp. 506-513.

Sim-
 of

s-
er-

hock
 of

cien-
vil

++,”
ivil

.

, 3D
1992.

pp.

 Pro-

M

Pro-

ds
[10] D. W. Forslund, C. Wingate, P. Ford, J. Stephen Junkins, and S. C. Pope, “A Distributed Particle
ulation Code in C++,” Proc. 8th Computing in Civil Engineering Symposium, American Society
Civil Engineers, 1992, pp. 514-518.

[11] A. C. Robinson, A. L. Ames, H. Eliot, Fang, D. Pavlakos, C. T. Vaughan, and P. Campbell, “Ma
sively Parallel Computing, C++ and Hydrocode Algorithms,” Proc. 8th Computing in Civil Engine
ing Symposium, American Society of Civil Engineers, 1992, pp. 519-526.

[12] J. S. Peery and K. G. Budge, “Experiences in Using C++ to Develop a Next Generation Strong S
Wave Physics Code,” Proc. 8th Computing in Civil Engineering Symposium, American Society
Civil Engineers, 1992.

[13] T. J. Ross, J. P. Morrow, L. R. Wagner and G. F. Luger, “Two Paradigms for OOP Models for S
tific Applications,” Proc. 8th Computing in Civil Engineering Symposium, American Society of Ci
Engineers, 1992, pp. 535-542.

[14] T. J. Ross, L. R. Wagner and G. F. Luger, “Object-Oriented programming for scientific codes:
Thoughts and Concepts,” and “Object-Oriented programming for scientific codes: Examples in C
Univ. New Mexico Technical Report No. CS92-2, to appear in ASCE Journal of Computing in C
Engineering.

[15] J. M. Coggins, “C++ in Numerical and Scientific Computing,” C++ Report, 4(3), 1992, pp. 65-68

[16] M. B. Stephenson, S. A. Canann and T. D. Blacker, “Plastering: A New Approach to Automated
Hexahedral Mesh Generation”, Sandia National Laboratories Report, SAND89-2192, February

[17] T. Keffer, “Object-Oriented Numerics, Part 2: Virtual Algorithms,” The C++ Journal, 2(2), 1992,
3-8.

[18] I. G. Angus, “An Object Oriented Approach to Boundary Conditions in Finite Difference Fluid
Dynamics Codes,” Scalable High Performance Computing Conference, 1992.

[19] I. G. Angus, “Image Algebra: An Object Oriented Approach to Transparently Concurrent Image
cessing,” Scalable High Performance Computing Conference, 1992.

[20] D. Quinlan, “Workshop on C++ for Scientific Computing”, Abstracts in the proceedings of the SIA
Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, April 9-14, 1992.

[21] W. S. Brainerd, C. H. Goldberg and J. C. Adams,Programmer’s Guide to Fortran 90, McGraw-Hill,
1990.

[22] L.M. Taylor and D.P. Flanagan, “PRONTO-3D: A Three-Dimensional Transient Solid Dynamics
gram,” Sandia National Laboratories Report, SAND87-1912, 1989.

[23] K.G. Budge, “PHYSLIB: A C++ Tensor Class Library,” Sandia National Laboratories Report,
SAND91-1752, 1991.

[24] G. Walker, “Why the Choice Must Be C++,” The C++ Journal 2(1), 1992.

[25] R. B. Davies, “Notes for the library working group of WG21/X3J16,” Presented at C++ Standar
Committee Meeting, March 1991.

[26] N. M. Wilkinson, “C++ Return Value Optimization,” The C++ Journal, 2 (1), 1992, p. 47.

	Introduction
	C++ As a Meta-Language for Mathematical Physics
	Encapsulation of Physical Concepts
	Tracer Particle Objects
	C++ Software Engineering Experience
	C++ Reusability
	C++ Efficiency Issues for Overloaded Operators
	Summary
	Acknowledgments
	References

